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As ecologists, we are often interested in answering 
causal questions, such as the effect of climate- induced 
bleaching events on coral reef ecosystems (e.g. Graham 
et al., 2015), the impact of deforestation on biodiversity 
(e.g. Brook et al., 2003), or the effect of conservation and 
management responses on restoring ecosystem services 
(e.g. Sala & Giakoumi,  2018). Often, randomised con-
trolled experiments are unfeasible, and ecologists instead 
rely on observational data to answer fundamental causal 
questions in ecology (MacNeil, 2008). New advances in 
technology such as remote- sensing and animal- borne 
sensors, as well as increased availability of citizen sci-
ence and electronic data have further increased oppor-
tunities to answer causal questions from observational 
data (Sagarin & Pauchard, 2010).

In recent years, some ecologists have advocated for 
the increased application of developed causal inference 
methodologies for answering cause and effect relation-
ships from observational data. For example Cronin and 
Schoolmaster Jr.  (2018), Schoolmaster Jr. et al.  (2020), 
Laubach et al.  (2021) and Arif and MacNeil  (2022) uti-
lise causal models based on the Structural Causal Model 
framework (SCM; Pearl,  2009); Butsic et al.  (2017), 
Larsen et al. (2019) and Arif and MacNeil (2022) discuss 

quasi- experimental approaches for observational causal 
inference; and Ferraro et al.  (2019) and Kimmel 
et al. (2021) discuss causal assumptions required for both 
observational and experimental set- ups. However, causal 
inference methodologies have yet to be widely adopted 
in observational ecology. Instead, drawing causal con-
clusions from observational data is typically taboo, with 
Pearson's oft- cited ‘correlation doesn't equal causation’ 
used to block attempts to do so (Glymour, 2009). This 
misconception— that causality cannot be inferred using 
observational data— has resulted in a culture where ecol-
ogists dependent on observational data for understand-
ing causal relationships avoid explicitly acknowledging 
the causal goal of research projects and instead use 
coded language that implies causality without explicitly 
saying so (Arif & MacNeil, 2022; Hernan, 2018).

A common strategy used to quantify ecological rela-
tionships is to apply model selection, using information 
metrics such as Akaike's information criterion (AIC; 
Akaike, 1973). These approaches select the ‘best’ model 
among a candidate set and subsequently make inferences 
from parameters that are of ecological interest within 
the top- ranked model. Often, these inferences are tied 
up with causal language, implying that having selected 
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Abstract

Ecologists often rely on observational data to understand causal relationships. 

Although observational causal inference methodologies exist, predictive techniques 

such as model selection based on information criterion (e.g. AIC) remains a 

common approach used to understand ecological relationships. However, predictive 

approaches are not appropriate for drawing causal conclusions. Here, we highlight 

the distinction between predictive and causal inference and show how predictive 

techniques can lead to biased causal estimates. Instead, we encourage ecologists 

to valid causal inference methods such as the backdoor criterion, a graphical rule 

that can be used to determine causal relationships across observational studies.
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the best model, one can proceed to using causal language 
in reference to it (Table 1). However, model selection is 
not a valid method for inferring causal relationships— 
rather, these techniques aim to select the best model for 
predicting a response variable of interest. For example 
AIC approximates a model's out of sample predictive 
accuracy, using only within- sample data (Akaike, 1973). 
Although numerous model selection criteria exist (e.g. 
BIC, Schwarz,  1978; DIC; Spiegelhalter et al.,  2002; 
WAIC, Watanabe, 2013; LOO- CV; Vehtari et al., 2017), 
they are all used to compare models based on predic-
tive accuracy (Laubach et al.,  2021; McElreath,  2020; 
Tredennick et al., 2021). Thus, model selection is appro-
priate for predictive inference (i.e. which model best pre-
dicts Y?), which is fundamentally distinct from causal 
inference (i.e. what is the effect of X on Y?).

To demonstrate this distinction, the directed acyclic 
graph (DAG) in Figure 1 shows the causal structure of 
a hypothetical ecological system. DAGs can be used to 
visualise causal relationships, where variables (nodes) 
are connected to each other via directed arrows, point-
ing from cause to effect (Elwert, 2013). For example for-
estry affects species Y both directly (there is a directed 
arrow between them) and indirectly, via the directed 
arrow from forestry to species A and from species A to 
species Y (Figure 1). We created a simulated dataset that 
matches the linear causal structure of this DAG, setting 
the total (i.e. direct and indirect) causal effect of forestry 
on species Y to −0.75 (Appendix S1). We further spec-
ified candidate linear regression models that included 

all possible covariate combinations where species Y is a 
response. Using our simulated data and our candidate 
models, both AIC and BIC selected a ‘best’ model where 
forestry, species A, human gravity, climate and invasive 
species Z were included as covariates (Appendix  S1). 
However, interpreting the coefficients of this model pro-
vided biased causal estimates, with the effect of forestry 
on species richness estimated to be −0.36 [−0.38, −0.33], 
instead of −0.75 (Appendix S1).

In this scenario, there are two statistical biases at play 
(see Appendix S1 for a breakdown of common statistical 
biases). The first is overcontrol bias, which occurs when 
the inclusion of an intermediate variable along a causal 
pathway removes the indirect causal effect between 

TA B L E  1  A sample of recent observational ecological studies that have used model selection techniques to answer causal questions, using 
causal language (e.g. effect, driver, influence) to communicate results

Paper Causal question Model selection
Causal 
language

Millard et al., 2021 What are the global effects of land- use intensity on local 
pollination biodiversity?

AIC Yes

Lu et al., 2021 What is the impact of land surface temperature on urban 
net primary productivity?

AIC Yes

Safaie et al. (2018) How does high- frequency temperature variability effect the 
risk of coral bleaching?

AICc Yes

Morton et al., 2021 What is the impact of wildlife trade on terrestrial 
biodiversity?

BIC Yes

Chinn et al., 2021 What is the influence of intrinsic and extrinsic attributes on 
neonate survival in wild pigs?

WAIC Yes

Montano- Centellas et al. (2020) What are the ecological drivers of avian community 
assembly along a tropical elevation gradient?

AIC Yes

Rode et al., 2021 What are the combined effects of sea ice, seal body 
condition and atmospheric circulation patterns on polar 
bears in the Shukchi Sea?

AIC Yes

Sinnot- Armstrong et al. (2021) What are the biotic and abiotic drivers of fruit colour 
syndrome?

AICc Yes

Walker et al., 2021 What factors influence scavenger guilds and scavenging 
efficacy in Southwestern Montana?

AICc Yes

Teixeira et al., 2021 How did past environmental changes (prior to human 
impact) effect lemur population dynamics in 
Madagascar?

AIC Yes

F I G U R E  1  A directed acyclic graph (DAG) representing the 
causal structure of a hypothetical ecological system.

 14610248, 2022, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ele.14033 by C

olorado State U
niversity, W

iley O
nline L

ibrary on [27/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



   | 1743ARIF and MACNEIL

predictor and response (Cinelli et al., 2022; Appendix S1). 
Here, the inclusion of the intermediate variable species 
A removes the indirect effect between forestry and spe-
cies Y. Second, the inclusion of invasive species Z as a 
covariate leads to collider bias, which can result from 
adjusting for a variable that is caused by both predictor 
and response (Cinelli et al.,  2022; Appendix  S1). Here, 
the inclusion of invasive species Z induces an additional, 
but non- causal, association between forestry and species 
Y. Past studies have noted that other forms of statistical 
biases (i.e. non- causal associations) such as collider bias 
(Appendix S1) can also increase predictive accuracy (e.g. 
Griffith et al.,  2020). Thus, a model selected based on 
predictive accuracy should not be assumed to be caus-
ally accurate and ecologists need to understand these 
dimensions to ensure the tools used are fit for purpose.

Despite the distinction between predictive and causal 
inference, many ecological studies continue to misuse pre-
dictive techniques for causal interpretation. In addition to 
model selection, machine learning (ML) techniques meant 
for predicting outcomes have also been misused for causal 
interpretation. ML is a rapidly growing approach con-
cerned with generating accurate predictive models from 
often large and complex datasets (Greener et al.,  2022). 
However, despite its relatively recent emergence, predic-
tive ML techniques have already been conflated with 
causality in the ecological literature. For example pre-
dictive machine learning techniques have been used to 
understand the drivers of extinction risk in marine mam-
mals (Davidson et al., 2012), geographical drivers of the 
Mediterranean fruit fly (Bekker et al.,  2019), drivers of 
viral density in bats (Guy et al.,  2020) and mechanisms 
driving arbovirus outbreaks (Alkhamis et al.,  2021). 
Ecological reviews of predictive ML approaches have fur-
ther suggested that such techniques can be used to both 
predict and causally explain ecological processes (Olden 
et al.,  2008; Yu et al.,  2021). The increased application 
of predictive ML techniques combined with the growing 
availability of big data may lead to their further misuse for 
causal interpretations in ecology.

Ultimately, the widespread use of predictive tech-
niques for causal inference across ecological studies 
signal that developed observational causal inference 
methodologies have not been properly introduced 
to many ecologists. To help remedy this, we outline a 
widely applicable graphical rule, the backdoor criterion, 
that can be applied to determine causal effects from ob-
servational data. In contrast to predictive techniques, 
causal models based the backdoor criterion are built 
based on the specific causal question at hand, as well as 
through the careful consideration of the overall causal 
structure of a system, including how different predictor 
variables may be related to one another. It provides a 
formal means for isolating causal effects from observa-
tional data, and eliminating common statistical biases 
including confounding, overcontrol and collider bias 
(Appendix S1).

TH E BACK DOOR CRITERION: 
COVARIATE SELECTION FOR 
CAUSA L IN FERENCE

A causal inference methodology that has recently 
emerged in ecology is Judea Pearl's Structural Causal 
Model framework (SCM; Pearl, 2009). This framework 
uses DAGs to visualise researchers' assumptions about 
the causal structure of a system or process under study. 
DAGs should include all relevant variables required to 
depict a system under study and be carefully constructed 
and sufficiently justified based on domain ecological 
knowledge. We refer readers to Cronin and Schoolmaster 
Jr.  (2018), Schoolmaster Jr. et al.  (2020) and Arif and 
MacNeil (2022) to gain a deeper understanding of how to 
construct DAGs to represent a system or process under 
study. Once a DAG has been created, the backdoor crite-
rion can be applied to determine the covariates required 
to answer a specified causal question from observational 
data.

Conceptually, the backdoor criterion instructs us to 
block all non- causal paths between a predictor and response 
variable of interest, while leaving all causal pathways open. 
Graphically, this translates to blocking all backdoor paths 
between a predictor and response variable. Backdoor paths 
are sequences of nodes and arrows with an arrow pointing 
into both the predictor and response variable of interest; if  
left open, they can induce non- causal associations between 
variables of interest. To block a backdoor path, we can ei-
ther (1) adjust for an intermediate arrow- emitting variable 
or (2) not adjust for a variable with two incoming arrows 
(i.e. a collider variable: ➔ X ←).

For example given our DAG in Figure 1, to determine 
the total effect of forestry on species Y, there are three 
backdoor paths that must be blocked:

1. Species Y ← Climate ➔ Forestry
2. Species Y ← Species A ← Fire ← Climate ➔ Forestry
3. Species Y ← Human Gravity ➔ Forestry

The first two backdoor paths can each be blocked by 
adjusting for the intermediate arrow- emitting variable 
climate. The third backdoor path can be blocked by ad-
justing for the intermediate arrow- emitting variable 
human gravity. Therefore, to determine the total effect 
of forestry on species Y, we must adjust for climate and 
human gravity. Following covariate selection, researchers 
can determine the appropriate statistical analysis, given 
their data. It is important to note that DAGs and the back-
door criterion are compatible with both linear and non- 
parametric approaches (Elwert, 2013; Pearl, 2009). As our 
simulated data were created using linear relationships, we 
have chosen a linear regression model, setting species Y as 
our response, forestry as our predictor and including cli-
mate and human gravity as controls. This model returned 
an accurate total causal estimate of −0.75[−0.77, −0.73] 
(Appendix S1). The application of the backdoor criterion 
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can become increasingly complex with larger DAGs and as 
such, tools such as ‘dagitty’ (www.dagit ty.net; instructions 
within site) can help in composing DAGs and specifying 
causal questions, which will subsequently identify re-
quired backdoor adjustment sets. We further recommend 
that ecologists create their DAG and determine potential 
backdoor adjustment sets before collecting observational 
data, to ensure that variables needed for causal analysis 
are measured.

DISTINCTION FROM 
PREDICTIVE IN FERENCE

Covariate selection using the backdoor criterion is fun-
damentally distinct from commonly applied predictive 
techniques. The backdoor criterion is based on counter-
factual reasoning, equating observational distributions 
to what would be expected under a randomised control 
experiment (Pearl, 2009). Unlike predictive approaches, 
the backdoor criterion was specifically created to answer 
cause and effect relationships from observational data. 
Furthermore, whereas predictive approaches often rely 
on the data to determine the best model, the backdoor 
criterion uses domain knowledge, above all else, to de-
termine the best causal model for a given causal query. 
The use of DAGs and the subsequent application of the 
backdoor criterion allows ecologists to move away from 
an automated model selection and other predictive tech-
niques to one that empowers ecologists to think critically 
about the cause- and- effect relationships in their study 
system. The use of DAGs also facilitates open critique 
of causal assumptions therefore their causal conclu-
sions, which in turn can lead to a productive scientific 
debate that deepens our understanding of ecological 
phenomena (e.g. see Schoolmaster Jr. et al., 2020; rebut-
tal by Grace et al., 2021; and reply by Schoolmaster Jr. 
et al., 2021).

Currently, DAGs and the backdoor criterion are 
underutilised relative to the dominant predictive 
model selection techniques for understanding causal 
relationships in ecology. Thus far, the backdoor cri-
terion has been applied to understand the causes of 
species level trait covariation (Cronin & Schoolmaster 
Jr.,  2018), biodiversity- ecosystem function correlations 
(Schoolmaster Jr. et al.,  2020), and causal drivers of 
coral- algal regime shifts (Arif et al., 2021). As these var-
ied examples demonstrate, the backdoor criterion can be 
widely applicable for understanding ecological causal 
relationships.

While we have highlighted the backdoor criterion as 
a widely applicable observational causal inference tool, 
we note that numerous other tools and frameworks exist. 
Readers are also encouraged to learn about the front- 
door criterion, a second graphical rule under the SCM 
framework that can be used to determine causal effects 
in the presence of an unobserved confounding variable 

(Paul, 2011; Pearl, 1995). Other causal inference frame-
works, such as quasi- experimental approaches (Arif & 
MacNeil,  2022; Butsic et al.,  2017; Larsen et al.,  2019), 
and time- series causal analysis (Runge et al., 2019) may 
also be useful, given the causal questions and data at 
hand. Ultimately, the uptake of valid causal inference 
methods across observational ecological research will 
lead to better statistical analysis and causal understand-
ing of ecological phenomena.
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